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bstract

A simple, global model for the optimal combination of ultracapacitor and battery for electrical energy storage is developed. The goal for

his hybrid storage technology is to reduce the system life-cycle cost by making use of an ultracapacitor’s claimed long cycling-life in order to
upplement relatively cheap, but cycle-limited battery storage. The model is built up of two independent sub-models that allow flexibility in the
elative proportion of system energy storage. An analysis performed in this paper indicates that ultracapacitor/battery storage systems may be cost
ffective for high-cycle applications.

2008 Elsevier B.V. All rights reserved.
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. Introduction

Renewable energy systems that make use of fluctuating
rime-movers (e.g. wind power) produce power that also fluctu-
tes on several time-scales. For a wind power system, time-scale
uctuations range from the slowest, such as fluctuations over the
ourse of several years (e.g. El Nino effects), to seasonal vari-
tions (e.g. in some areas the wind blows stronger and more
onsistently in the Winter), to short time-scale fluctuations on
he order of seconds up to an hour. Though the grid-connected
oad also varies; in many cases, it is desirable to smooth out
hese generation fluctuations to some degree.

There are three main techniques that can be applied in
moothing out wind power fluctuations (1) Aggregation of spa-
ial diversity both within wind-farms and between wind-farms
or single installations) (2) Aggregation of generation diversity
hat uses other means of generation that may possess differ-
nt fluctuation characteristics or that may be throttled and (3)
torage of surplus energy in order to release the surplus during

imes of power generation deficit. Different storage technologies

ave differing characteristics that make the particular technology
ore or less suitable for reducing the variability over particu-

ar time-scales and for particular scales of energy amounts. For
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nstance, pumped hydro storage is particularly well-suited for
educing variability in the hours-to-days time-frame for very
arge amounts of energy, while batteries are more well suited for
he second to hour time-frame for much more modest amounts
f energy. It may be beneficial to combine storage technologies
nto systems that allow each specific technology to concentrate
n its “best fit” of time-scale and energy-scale, thereby creating
storage system that can deal more effectively with variations

rom power sources. Besides power source smoothing, a well-
atched storage system could also be useful in a variety of other

pplications (e.g. power smoothing for variable loads).
As one example of power variability, take for instance one

ource (namely tower shadow) in an example state-of-the-art
lectricity producing wind turbine with a nameplate rating of
mW and an overall design lifetime of approximately 20 years.
he turbine rotor will rotate at approximately 15 rpm at rated
peed. As the three blades pass in front of the tower, they will pass
hrough a small area of reduced will speed directly in front of the
ower. This tower shadow effect reduces the wind turbine output
y up to approximately 1% and lasts for up to approximately 5◦
f rotation. Assuming a square wave for the power pulse, the net
ffect of this tower shadowing causes a 0.75 Hz 56 ms duration
0 kW power dip for this example turbine. As the mean wind
peed fluctuates, so too will the turbine rpm, produced power,

nd hence the duration, frequency, and magnitude of the power
ip; however, if the turbine is placed in a favorable wind regime
t will be operating at rated speed for much of the time. As a
onservative estimate, let the wind turbine operate at rated speed

mailto:henson_eng@yahoo.com
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Nomenclature

a1, a2, a3 coefficients for exponential fit
BBS baseline battery system
CF cycles to failure for battery
DOD depth of discharge
RMSE root mean squared error
2 × (0.1U + 0.9 BS) combination system with 2 times

energy capacity of BBS, utilizing 10% Ucap

f
i
d

o
d
o
w
a
fl
v
a
o
a
a
c
fl
p
t
s
d
i
t
f
t
v

n
c
u
e
s
t
f
e
b
a
l
H
u
d

a
f

a
M
t
c
f
e
n
t
s
i
d
f
s
i

2

o
r
T
s
p
u

C

B
t
t
s
v
in creating the fit. Fig. 2 shows the datapoints (green crosses
– DataPoints), the best curve fit obtained (blue line – BF), and
also the curves using 95% confidence interval for the best-fit
coefficients (red lines – 95 CI).

Table 1
Coefficient Values and 95% Confidence Intervals

Coefficient Value 95% CI
Ucap ultracapacitor

or 10% of the year (i.e. a 10% cycling duty cycle), this translates
nto roughly 2.4 million cycles per year of this example power
ip.

Sources of power variability in a wind turbine are not limited
nly to tower shadow; wind field non-uniformity across the rotor
isk (i.e. turbulence and shear) and wind field non-uniformity
ver time (i.e. wind gusts), as well as switching operations
ithin the electrical (and sometimes mechanical) components

nd actuator lag in the turbine all contribute to short-term power
uctuations. Given the wind turbine 20 year design lifetime, a
ery large number of cycles (in excess of 106) could certainly be
chieved by fluctuations with cycling frequencies on the order
f 0.016 Hz. This cycling with a period of about 1 min falls in
relatively high-energy portion of the wind spectrum [1–3],

nd so a high cycling duty cycle is likely. A smoothing system
ould be envisaged that would reduce the magnitude of power
uctuations resulting in a more desirable constant power out-
ut on the short-term time-scale. A sophisticated design will
ake all sources of variability into account. In other words, a
hort-term storage system should be designed to balance the
esires to smooth power over a range of fluctuations: from those
nduced by tower shadow (low energy, high cycling frequency)
o those induced by wind gusts (moderate energy, low cycling
requency), perhaps even up to those caused by slightly longer-
erm fluctuations in the 10-min mean wind speed (high energy,
ery low cycling frequency).

This paper examines the possibility of some optimal combi-
ation of battery and ultracapacitor for energy storage in a direct
urrent bus. The utility of the lead acid battery is that it is ubiq-
itously available; it has a relatively good ratio of cost to useable
nergy, and it is familiar for use in renewable energy and power
ystems applications. One of the drawbacks of lead-acid bat-
eries is that repeated charging and discharging leads to battery
ailure. Due to (among other things) repeated cycling, renewable
nergy systems can be particularly troublesome for lead-acid
attery storage [4]. Battery construction can be tailored to the
pplication so that, for example, with thicker lead plates battery
ongevity may be improved in high or deep cycle applications.
owever, it is unfortunate that though batteries are rechargeable,
sing them in this manner shortens their lifespan—in some cases

ramatically.

Like batteries, ultracapacitors also store electrical energy via
chemical process; however, there are several important dif-

erences between the two storage technologies. Ultracapacitors

a

a

a

Fig. 1. Schematic of hypothetical storage integration.

re a rather new technology compared with lead-acid batteries.
anufacturers claim that cycling (in and of itself) has essen-

ially no effect on the lifetime of ultracapacitors. Ultracapacitors
an discharge at much higher rates than batteries—though only
or limited durations. Yet, ultracapacitors are significantly more
xpensive than batteries on a cost per stored energy basis and do
ot possess the high volumetric energy density of lead-acid bat-
eries. The strengths and weaknesses of the two technologies
hould fit well into a storage system where the ultracapac-
tor could compensate for frequent, short, and high power
isturbances, while the battery could provide compensation
or longer-term less frequent events. Fig. 1 shows a simple
chematic of a hypothetical system where the storage has been
nserted into a dc bus of a back-to-back type power converter.

. Methods

The overall model has been built primarily as an extension
f a simplification of an exponential decay and Miner’s damage
ule model described as part of the UMass battery model [5].
his double exponential decay model of has been reduced to a
ingle exponential decay for simplicity, so now the battery life
rediction equation for cycles to failure as a function of DOD
ses only three coefficients:

F = a1 + a2ea3DOD (1)

est-fit coefficients (for a1, a2, and a3) for the BAE OPzS bat-
ery from [5] were obtained by minimizing the RMSE using
he Quasi-Newton with BFGS Hessian update method. Table 1
hows the coefficient values obtained and 95% confidence inter-
als for the best-fit coefficients. Table 2 lists the datapoints used
1 1.405 ×103 0.870 ×103 to 1.941 ×103

2 1.341 ×104 0.947 ×104 to 1.735 ×104

3 −7.312 −9.957 to −4.675
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Table 2
Data Values for Example Battery [5]

DOD CF

0.1 8000
0.2 4000
0.3 3200
0.4 2400
0.5 1900
0.6 1600
0.7 1350
0.8 1200
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Fig. 2. Best fit RMSE to example battery.

This example battery will be used as the baseline system
n the following analysis, in order to normalize the results and
llow for their generalization. Therefore, DOD will be fixed
t the amount for the baseline system. Fig. 3 shows a com-
arison of the effects of modifying the baseline system by, for
xample, doubling the size (thereby halving the effective DOD)
r by including an Ucap as a percentage of the system total
nergy.

In the figure, the baseline battery system, BBS, (blue circled
ine) possesses a shorter cycling-life than a battery only system
hat is twice as large, 2 × BBS, (red circled line), a system that
ombines a Ucap and battery in a ratio of 0.1–0.9 of baseline
nergy, 1 × (0.1U + 0.9BBS), (blue crossed line), or a combina-

ion system of 0.2–1.8 of baseline energy, 2 × (0.1U + 0.9BBs),
red crossed line). Also evident in the figure is the schema for
he operation of the combination system: discharges of less than
he energy level of the Ucap are simply assumed to not affect

Fig. 3. Cycles to failure of systems.
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he cycling-life of the combination system e.g. for DODs less
han 0.1 for the 1 × (0.1U + 0.9BBS) system or for DODs less
han 0.2 for the 2 × (0.1U + 0.9BBS) system.

Costs for the individual components of the model are sim-
ly taken as initial capital costs and are linear combinations
f current prices of commercial deep-cycle lead-acid batteries
nd symmetric ultracapacitors and are approximately 5 ×10−5

S$/Joule and 1.5 ×10−2 US$/Joule, respectively [6,7]. The
ystem costs are also normalized with respect to the baseline
ystem. The model does not use economic methods such as
et present value, though these could be readily added. As an
xample, the cost for the 2 × BBS system is 2 times that of
he baseline, while the 1 × (0.1U + 0.9BBS) system would cost
pproximately 35 times the baseline system.

There are two main design variables in the system optimiza-
ion: ratio of Ucap energy to system energy and overall system
nergy—relative to the baseline battery only system. By utiliz-
ng different energy ratios and system sizes, a wide range of
ycling lifetimes and costs can be explored for the combination
hat minimizes the lifetime cost of the system. Both the battery
nd the Ucap are assumed to be ideal in the sense that only
he effects of DOD on cycling life are being studied in a non-
mplementation specific design. This precludes over and under
oltage operation, partial re-charging, and multi-cell effects. It
lso does not take into account any efficiencies or reduced oper-
tional abilities for either battery or Ucap. Finally, while the
ffect of cycling on the battery is obviously included, the Ucap
s assumed to be unaffected by charge/discharge cycles.

. Results

Before discussing the results of the system modeling, a brief
iscussion of the results of the curve-fit for the baseline battery
ystem will be presented.

The curve-fit problem is solved by minimizing the root mean
quared error between the candidate functions (i.e. Eq. (1) with
ifferent coefficient values) and the actual datapoints. Using a
uasi-Newton search with BFGS update method in the Mat-

ab Optimization Toolbox [8] required 36 main loop executions
nd 184 function evaluations from a start of [0 0 0]T. Using the
teepest descent method to update the Hessian did not result
n convergence to a solution within an acceptable number of
terations (i.e. greater than 104). Parallel analysis also using a
east squares approach, but with Levenberg–Marquardt search
tilizing the Matlab Statistics Toolbox [8] required 13 main loop
xecutions from a start of [0 0 0]T; resulted in the same coeffi-
ient estimates; and yielded, using the linearized estimate of the
oefficient covariance, 95% confidence intervals (see Table 1)
or the predicted coefficient values. Several starts from different
nitial conditions resulted in the same optimal final combina-
ion of coefficients, presumably this is predicted to some degree
y the fact that there are eight datapoints (equally spaced over
he x-axis) and only three coefficients resulting in an overcon-

trained problem that should have only one solution. In other
ords, given only three datapoints, it would be possible to fit
unique curve that would possess an RMSE of zero, since this

quation has an additional five datapoints, the problem becomes
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for gradient-based optimization. In the figures, one trajectory
endpoint (green box) possesses a initial values that cause the
search to proceed to a local minimum, while the other trajectory
Fig. 4. Curve fit coefficients and log(RMSE).

inimizing the RMSE. The objective function to be minimized
s:

(a1, a2, a3) =
√√√√1

n

n∑
i=1

[CF,i − (a1 + a2ea3DODi )]2 (2)

here i ranges from 1 to 8 (the number of datapoints). At an
xtremum (e.g. the minimum RMSE) the gradient of f with
espect to a1,a2, and a3 should vanish. In order for the extremum
o be confirmed as a minimum, the Hessian of f at (at least) the
xtremum should be positive definite. Of course, there is no
uarantee that this minimum is anything but a local minimum
nless the Hessian can be demonstrated to be positive definite
ver the entire space of a1, a2, and a3. The definition of RMSE
uarantees a positive definite Hessian over the entire space for
eal values—due to the squared term. This means that the solu-
ion found is a global minimum for the RMSE. Fig. 4 shows
three-dimensional volume plot where the color of the region

ndicates the natural logarithm of the RMSE value (blue indi-
ates smaller RMSEs while red indicates larger RMSEs). The
og function has been used in the plot in order to enhance the
ontrast. Also shown in the figure is the optimization trajectory
the black dotted line). As expected, the trajectory points toward
he smallest RMSE value.

Because the coefficients are constants, the sensitivity of the
bjective function (with respect to the individual datapoints) is
nly a function of the partial derivative with respect to each data-
oint. When one differentiates the objective function, in essence,
ne recovers the original equation for battery life, i.e.:

d

dDODi

f = a2a3ea3DODiqqi (3)

d

dCF,i
f = −qqiCF,i (4)

here

qi = −CF,i + a1 + a2ea3DODi (5)

ssuming that the terms common to all variables are factored
ut.
Because the sign of the exponent of the exponential term
i.e. a3) is negative, the sensitivity analysis of f with respect to
OD shows that the objective function seems to more heavily
eight datapoints at smaller values along the abscissa (i.e. data
ig. 5. Relative cost of combination system compared to life comparable battery
nly system: battery only system (blue Line), 10% Ucap system (green circles),
0% Ucap system (red crosses), 50% Ucap system (purple triangles).

ying closer to the origin). Fortunately, the fitted curve in this
ase not only possesses a minimal RMSE, but it also seems to
ualitatively fit the data very well.

Fig. 5 shows a simple comparison between the costs of a Ucap
lus battery system and a battery only system that is sized to
rovide comparable cycle life. In order to improve legibility, the
gure is normalized such that only DOD’s above the Ucap ratio
or each system are considered (i.e. the curve for the 10% Ucap
ystem has been shifted by −0.1, and so on). As can be seen in
he figure, as the DOD rises above the capacitor size, the relative
osts of the system increase rapidly. However, there is a region
circled in red) where the capacitor/battery combination should
ost less for a similar number of cycles at particular depths of
ischarge.

A more complicated picture emerges when the two design
ariables (Ucap/System energy ratio and System size) are indeed
llowed to vary over the solution space. Figs. 6 and 7 illustrate
he system cost over the design space, and are three-dimensional
iews of function values for DODs of 0.9 and 0.1 respectively;
oth the height along the z-axis and color spectrum indicates
he function value (i.e. tall red indicates systems that cost more
hile low blue indicates systems that cost less).
Also visible in the figures are optimization trajectory

ndpoints (i.e. optimal points). As might be suspected, the
on-convex nature of the solution space proves a challenge
Fig. 6. System cost for 0.9 DOD.
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Fig. 7. System cost for 0.1 DOD.
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Fig. 8. Relative cost to Ucap failure, 0.5 DOD, BF coefficients.

ndpoint (red circle) possesses an initial condition that causes
he solution to proceed to the global optimum. The difference
etween the global and local optimum is that due to the nature
f the model, the cost of a system that possesses a Ucap that is
ized in order to match the DOD approaches zero as the num-
er of cycles (i.e. cycle-lifetime) tends towards larger and larger
alues; while the baseline system cost remains at unity. This is
omewhat an artifact of the model, so another analysis has been
erformed with an upper limit on the cycle-lifetime of the Ucap.

In this revised analysis, a lifetime limit of one million cycles
as been imposed on the Ucap component, and batteries in the
ystems are replaced once their lifetimes have expired. In effect
he question asked in this case is “How much does it cost for

his system to reach one million cycles?” Figs. 8–10 present
he three-dimensional results from the case where the Ucap size
s allowed to vary while the DOD (again using the baseline
OD) is fixed at 0.5. In the figures the black region is the region

Fig. 9. Relative cost to Ucap failure, 0.5 DOD, LC coefficients.

i
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e

F

Fig. 10. Relative cost to Ucap failure, 0.5 DOD, HC coefficients.

here the cost of a combination system would be equal to a
omparable battery only system; therefore systems that have
osts that are below the black plane are more cost-effective than
attery only systems (with exhausted battery replacement in both
ases).

Fig. 8 shows results using the best-fit coefficient values –
ence the caption’s . . . BF Coefficients’. Figs. 9 and 10 use coef-
cient values from the confidence interval limits. Fig. 9 shows

hat the region of cost-effectiveness for a Ucap/battery system
as grown (as expected) due to the use of the confidence inter-
al coefficients that result in a reduced cycling capability for
he battery portion of the system – the LC (low cycle) coeffi-
ients. Fig. 10 also shows expected results in that the region of
ost-effectiveness has shrunk due to the use of the confidence
nterval coefficients that result in increased cycling capability
or the battery portion of the system – the HC (high cycle) coef-
cients. Even using the HC coefficients, there is still a region
here the Ucap/battery system should be more cost-effective

han a strictly battery-based system.
Neither the minimums (with Ucap to system ratio = 0.5 and

ystem size = 1) nor the fact that a gradient-based optimization
lgorithm works well (for the convex solution space) is surpris-
ng. The figures are representative of the findings for all other
ODs.
What is more surprising, however, are the results presented

n Figs. 11–14 . In this analysis, the Ucap to system energy
s fixed at given values (in the case of Figs. 11 and 12

cap/System energy ratio = 0.1) and the DOD is allowed to
ary. Figs. 13 and 14 show the results of a similar analysis for
nergy ratio = 0.5. The analysis has been performed using the

ig. 11. Relative cost to Ucap failure, 0.1 Ucap energy ratio, BF coefficients.
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Fig. 12. Relative cost to Ucap failure, 0.1 Ucap energy ratio, HC coefficients.

Fig. 13. Relative cost to Ucap failure, 0.5 Ucap energy ratio, BF coefficients.
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Fig. 15. Relative cost to Ucap failure, 0.5 Ucap energy ratio, projected Ucap
cost, BF coefficients.
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vides the motivation to investigate further including such issues
ig. 14. Relative cost to Ucap failure, 0.5 Ucap energy ratio, HC coefficients.

est-fit coefficients (Figs 11 and 13) and the more limiting (in
erms of cost-effectiveness) HC coefficients (Figs 12 and 14).

As can be seen in each of the figures, there is a region (in
lack) where the cost of a relatively small amount of Ucap stor-
ge can offset the cost of the batteries required (and therefore
rovide a lower overall system cost) over a wide range of DODs.
his region changes shape (though seems to remain convex) as

he Ucap to system energy ratio changes.

. Discussion

Ultracapacitor cost is projected to decrease [7] and the effect

f cost reductions will be to increase the size of the region of
he below baseline system cost. Fig. 15 shows the results of
he high-cycle system cost analysis using the projected cost of
ltracapacitors in a system identical to that used for Fig. 13;

a
a
w
s

ig. 16. Relative cost to Ucap failure, 0.5 Ucap energy ratio, projected Ucap
ost, HC coefficients.

he systems used in the analysis for Figs. 14 and 16 are also
dentical.

When Figs. 15 and 16 is compared with Figs. 13 and 14, it can
e seen that the area of applicability has significantly increased.
t is not immediately visible in the figures that the overall system
ost compared to the results shown in Figs. 13 and 14 (i.e. the
alues on the z-axis) has also decreased substantially.

. Conclusion

The results of the fixed Ucap-to-system energy-ratio with
arying depths of discharge are very encouraging, in that they
mply that a small amount of Ucap storage may reduce over-
ll system lifetime cost (to a large number of cycles) over a
ide range of depths of discharge. This ability to benefit a

ange of DODs will be important in applications where the DOD
an vary significantly, for example short-term renewable power
moothing.

High cycling applications are present in many areas of the
lectrical power system. The utility of this simple model is to
how that a small amount of Ucap storage may well reduce
attery-based smoothing system overall lifetime cost. This pro-
s more sophisticated modeling (for each component, the system
s a whole, and the loading conditions to which such a system
ill be subject) and methods of implementation of such a hybrid

torage system.
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